Garbage Collection in B-Prolog

Neng-Fa Zhou
Department of Computer and Information Science
CUNY Brooklyn College
New York, NY 11210-2889, USA
zhou@sci.brooklyn.cuny.edu

Abstract

We present the garbage collector (GC) implemented in B-Prolog. It is
based on the incremental GC algorithm proposed for the WAM by Older and
Rummell, but modifications are made to adapt the algorithm to the ATOAM,
the abstract machine adopted in B-Prolog. The criterion on when to invoke GC
is refined to take determinism into account so that the effectiveness of GC is
enhanced and the penalty on execution time is minimized. In addition, special
efforts are made to handle those extensions of Prolog, such as delaying and
constraint solving, that are supported in B-Prolog.

1 Introduction

B-Prolog was released in 1994. From the beginning, it was realized that a GC would
be indispensable. However, it was postponed again and again because there were
many other projects (delaying, constraint solving, a debugging tool, external language
interfaces, and even a command editor) that were thought to be more interesting and
urgent. Arguably, GC for CLP systems becomes less urgent nowadays than, say, ten
years ago because computers nowadays have an order of magnitude more memory
than ten years ago. Also, backtracking can sometimes be used effectively to reclaim
space taken by garbage. Nevertheless, a GC is indispensable especially for those data-
intensive applications such as CAD and language processing, and systems that run
perpetually such as real-time applications. The DJ system!, which is an interpreter
for a Java-based constraint language implemented in B-Prolog, reveals that constraint
solving may require far more memory than expected.

There are two types of heap GC algorithms, namely mark-and-compact [1] and
copying [2, 3, 4] for Prolog. The incremental algorithm by Older and Rummell? is

Yhttp:/ /www.sci.brooklyn.cuny.edu/ zhou/dj.html
2Similar idea had been pursued by Touati and Hama [5)]

especially interesting because it is much simpler than a global copying GC. It is a
one-pass algorithm that collects only garbage in the top-most heap segment, i.e., the
terms created after the latest choice point was created. There is a trade-off between
time and space. On the one hand, if GC is not invoked often, some garbage may be
buried under a choice point and may never be collected. On the other hand, if GC
is performed frequently, the algorithm may significantly slow down the execution of
programs. However, if the frequency of GC is adjusted properly, the algorithm can
be as effective as a global GC and the time penalty can be kept very low. Another
advantage of the algorithm is that the order of segments is preserved [3] without any
extra cost.

The algorithm has to be adapted to the ATOAM, the abstract machine adopted
in B-Prolog. The ATOAM, as a Prolog machine, is not much different from the
WAM if only GC is concerned. Nevertheless, the non-standard functionalities such
as delaying and constraint solving provided by B-Prolog need special attention. For
example, frames on the stack in ATOAM no longer comprise a linear chronological
chain if there are calls being delayed. This makes it more difficult to identify what
terms are useless in ATOAM than in the WAM.

In Section 2, we briefly review the characteristics of the ATOAM memory archi-
tecture. In Section 3, we review the incremental algorithm by Older and Rummell
and adapt it to ATOAM. In Section 4, we discuss criteria for determining when to
invoke GC, and in Section 5 we evaluate the criteria and justify the one used in the
implementation.

2 Memory Architecture of the ATOAM

The ATOAM, as a Prolog machine, is a variant of the WAM. It uses all the data
areas used by the WAM. The program area stores the byte code instructions of loaded
programs, the symbol table, and dynamic clauses created during program execution.
The heap stores terms, mostly structural terms, created during execution. The regis-
ter H points to the top of the heap. The trail stack stores those updates that must be
undone upon backtracking. For each update, the address of the memory cell that was
updated and the old content of cell are stored. The register T points to the top of the
trail stack. The control stack stores frames associated with predicate calls. Unlike
in the WAM where arguments are passed through argument registers, arguments in
the ATOAM are passed through stack frames and only one frame is used for each
predicate call. Each time when a procedure is invoked by a call, a frame is placed on
top of the control stack unless the frame currently at the top can be reused. Frames
for different types of predicates have different structures. Currently, predicates are
classified into the following types: determinate, nondeterminate, delayed, and tabled.
The register AR points to the current frame that is being accessed in execution and
the register B points to the latest choice point, i.e., the frame for a nondeterminate
predicate.

A determinate frame has the following structure:

Al..An Arguments

AR: Pointer to the parent frame
CP: Continuation program pointer
BTM: Bottom of the frame

TOP: Top of the frame

Yi..¥Ym Local variables

Where BTM points to the bottom of the frame, i.e., the slot for the first argument,
and TOP points to the top of the frame, i.e., the slot just below that for the last local
variable?. The field BTM was not in the original version [6]. It was introduced for
handling delaying. Without delaying, the slot BTM would be useless since each time
a call is returned, the top of the stack can be set to be either the top of the caller’s
frame or the top of the latest choice point. With delaying, however, the situation
becomes a little more complicated. The chain of active frames connected by their AR
slots may not be chronological. For this reason, only the top-most frame that is not
a choice point can be released after the call is returned. The BTM becomes the new
top of the stack when the current frame is released.

A choice point frame contains, besides the slots in a determinate frame, three
other slots:

H: Top of the heap
T: Top of the trail
B: Parent choice point

The slot H points to the top of the heap when the frame is allocated. As in the WAM,
a new register, called HB, is used as an alias for B->H.

Figure 1 illustrates a situation in which the chain of active frames becomes non-
chronological. The frames £1 and £2 are for delayed calls, £3 is the latest nondeter-
minate frame, and f4 is a determinate frame. The execution of £4 was interrupted by
an event that woke up £1 and £2. The figure is a snapshot taken immediately after
the two woken frames were added into the chain of active frames and £2 became the
current active frame.

3 The Incremental GC Algorithm

The algorithm by Older and Rummell is said to be incremental since it only collects
garbage that resides in the top-most segment between HB and H. In this section, we
review the algorithm, but in ATOAM’s rather than WAM’s terms, and discuss how
to adapt the algorithm to handling delaying and constraint solving.

We use the terms stack top-segment, trail top-segment, and heap top-segment to
refer to those frames between the top-most frame and B, those updates between T

3Tt is a convention in the literature that the stack is assumed to grow downwards

|
AR— f?._

B—

£4

Figure 1: A non-chronological active frame chain.

and B->T, and those terms on the heap between H and HB, respectively. We will just
use the term top-segment if the stack it refers to is clearly understandable from the
context.

The algorithm looks like:

For each cell that refers to the heap top segment
rescue the cell by copying its referred term to the to-area;
redirect the cell to the eventual position of the referred term;
copy the terms in the to-area back to the heap;

The cells that have to be rescued include the argument slots and local variable slots
in the stack top-segment, the local variable slots of the latest choice point, and the
updated cells trailed in the trail top-segment. We assume that GC will be done at the
entry points of nondeterminate predicates. Therefore, no temporary registers need
to be rescued.

3.1 Correctness conditions

This algorithm assumes that the memory architecture meets the following require-
ments:

e All local variable slots must be initialized. Every GC requires the initialization
of slots regardless of its type. Since in ATOAM arguments are passed through
the stack and argument slots need not be initialized, the overhead of initial-
ization is constantly lower than that in the WAM. Consider, for example, the
following clause:

p(X,Y):-q(X,2),r(Z,9),t(8,Y).

4

In the WAM, three local variable slots, namely Z, S, and Y are necessary, but in
the ATOAM, only one local variable slot, i.e., Z, is adequate since X and Y are
arguments and the argument slot used by X is reused for the local variable S.

e All those cells that are older than the latest choice point B (including the ar-
guments stored in B) and that refer to the heap top-segment must be trailed in
the trail top-segment.

e No cell can be rescued more than once. This condition is important since after
a cell is rescued, it will be set to point to the eventual position of the referred
term, i.e., the position of the term after the term is copied back to the heap
from the to-area.

To have the GC meet the third condition, we have to make sure that in the trail top
segment all cells are different. This is guaranteed for standard Prolog programs since
no variable can be instantiated more than once. For systems such as B-Prolog that
allows non-logical updates of compound terms, constraints lists, and finite-domains,
we have to pay special attention. We can use a time stamp for each cell to make sure
only the first update with respect to a choice point is trailed. If we allow multiple
updates for a single cell to be trailed, then we have to compact the trail every time
GC is done.

3.2 Traversing stack frames

To rescue the cells in the frames in the top-segment, we can start from the current
frame pointed to by the AR register and traverse the chain of active frames until we
reach a frame that is not younger than the latest choice point. This method works
for standard Prolog programs.

As mentioned above, with delaying, the chain of active frames connected by their
AR slots may not be chronological. A frame’s AR slot may point to a frame that
happens to be younger than the frame.

There are two methods for traversing frames in the top-segment. One method is
to add an extra slot into each frame and let it point to its previous frame. In this way,
all frames in the top-segment can be reached from the top-most frame. The other
method is to traverse the whole chain of active frames including those frames that
are older than the latest choice point. To make this operation fast, we can introduce
a tag, which is one bit, to each frame to tell where we can stop.

In addition to traversing the active frames, we must also traverse suspension
frames. Since there is another chain that connects all such frames [7], it is not
difficult to scan those suspension frames in the top-segment.

3.3 Rescuing terms

In BNR-Prolog [4], structures and lists are represented in contiguous memory cells,
possibly with continuations. Thus, an iterative algorithm can be designed to copy

5

rescueTerm(addr,term){
if (term is in heap top-segment){

if (term has been rescued){
*addr = eventualPos (*term) ;

} else if (term is a reference but not free) {
rescueTerm(addr,*term); /* dereference */

} else if (term is free) {
postpone rescuing it;

} else {

}
else /* term is not in heap top-segment */
*addr = term;

Figure 2: Rescuing terms.

terms from the top-segment to the to-area. For B-Prolog where terms are represented
in the same way as in the traditional WAM, we need a recursive algorithm. Figure 2
shows the scheme of the algorithm. In the real implementation, a resizable stack is
used instead of the stack in C.

The function call rescueTerm(addr,term) rescues a cell, where addr is the ad-
dress and term is the content of the cell. If term has been rescued, i.e., it is a pointer
to the to-area, then the cell is set to point to the eventual positon of the term. If
term is a reference but not free, then dereference takes place. This is the so-called
garbage-collection time dereference. Since term is guaranteed to be young that the
latest choice point, it is safe to cut off reference chains.

As mentioned in [2, 3], the heap may grow because of GC if inner variables in
structures are copied before the structures. Consider, for example, the call p(X, £ (X))
where the first argument of the call points to the argument of the structure. If the
argument X is copied before f(X), then the heap will grow by one cell after GC. To
remedy this, some garbage collectors, such as [2, 3], use another bit for each heap cell
to indicate whether the cell is in a structure. We take a different approach. Instead
of using another bit for each heap cell, we postpone the copying of free variables until
all structures and lists are copied. In this way, the heap is guaranteed not to grow
after GC.

4 When Should GC be Done?

It is a daunting task to find a good answer to this question because the performance
fluctuates for not only different programs but also for different settings for the system.
There is a trade-off between time and space. If GC is not invoked often, some garbage
may be buried under choice points and may never be collected. On the other hand,
if GC is invoked too often (e.g., before each choice point is created), then GC would
considerably slow down the execution of programs. A good criterion should lie in
between these two extremes.

In [4], GC is invoked when the proceed instruction is executed that returns the
call of the latest choice point and the size of the heap top-segment is greater than
a threshold constant. The advantage of this strategy is that no scanning of stack
frames is necessary. The disadvantage is that some garbage may never be collected
even if the threshold is zero. The following example illustrates such a situation:

go:-g(X),t(X,Y),c(Y).

Suppose g(X) and t(X,Y) are determinate predicates that do not create any choice
points and c(Y) is nondeterminate. X becomes garbage after t(X,Y) is returned but
it cannot be collected because it will be buried under the choice point created by
c(Y).

A good criterion depends on what kinds of applications the system is designed
for. For example, for time-critical applications such as real-time control system and
interactive user interfaces, GC should be done frequently to ensure that the system
never pause long. We discuss in the following of this section what a criterion should
be used to avoid heap overflows. The goal is to use an incremental GC to achieve
what is achieved with a global GC.

We use the following function:

H avail

Hyp > C x — il
Hmam - Havail

where H,,, is the amount of memory in the heap top-segment, H,,q4 is the amount of
available heap space, H,,., is the total amount of space allocated to the heap, and C
is a constant. At the entry point of a nondeterminate predicate, GC is invoked if Hy,,
is greater than the threshold. This function ensures that GC will be invoked more
frequently with the amount of heap space becoming less and less compared with the
amount of consumed space.

Most predicates in typical Prolog programs are globally determinate in the sense
that no call to them leaves a choice point on the stack after it returns. Choice points
are necessary for them but they only survive a short time. For these predicates, GC
should be done less frequently than for nondeterminate predicates since garbage is
unlikely to be buried by their choice points for long. To this ends, we use a bigger
threshold function for globally determinate predicates than that for nondeterminate
ones.

Experiments show that GC is still done too frequently even if a big constant C is
used in the threshold function. The culprit is in that once a segment becomes eligible
for GC, it will always be so if the heap does not shrink after GC. The following
example illustrates this situation:

p([X1Xs]) :-q(X),!,p(Xs).
p([l).

Suppose q(X) is nondeterminate and the top-segment is bigger than the threshold.
The cut following q(X) discards the choice points created by q(X). Each time q
is called, the same segment will be garbage-collected. To prevent GC from being
repeatedly invoked for the same segment, we remedy the strategy so that no segment
can be garbage-collected consecutively more than once. This strategy may leave some
garbage uncollected, but can significantly reduce the number of GCs performed.

5 Performance Evaluation

As mentioned in [4], the choice of benchmarks for evaluating GC strategies is always
problematic. Some programs are determinate for which no choice point is necessary
and GC will be postponed until before the heap space runs out. Some other programs
involve a lot of backtracking and thus there are tremendous opportunities for GC to
be called. We choose three programs: bp-compiler the B-Prolog compiler, boyer a
theorem prover, and magic sequence a finite-domain constraint program.

Table 1 compares three different strategies: GC-no, GC-all, and GC-part. In
GC-no, no GC is done at all. In GC-all, GC is done at the entrance of every
nondeterminate predicate. And in GC-part, GC is done at the entrance of every
nondeterminate predicate unless the top-segment had just been garbage-collected.
Undoubtedly, GC-all invokes GC most frequently and requires the least amount of
space. The column #GCS shows the number of times GC is performed. For magic
sequence, two values H+IL are shown, where H is the heap space and L is the local
stack space required.

Program Space (bytes) #GCS
GC-no GC-all GC-part | GC-all | GC-part
bp-compiler 926,212 383, 016 406,260 | 42,149 13,893
boyer 575,788 924,316 924,316 | 144,857 | 23,106
magic seqence | 1,620+7,744 | 1,272+5,404 | 1,4444-5,616 2,975 1,324

Table 1: Comparison of three strategies.

In terms of CPU time, GC-all is over ten times slower than GC-no.

In the above comparison, no threshold function is used. Table 2 compares the
number of GCs performed on different settings. Each row represents a different
setting for the constant C in the threshold function and each column represents a
different setting for Hpay (Himae iS set to be the number times the amount required by
GC-part shown in table 1). The constant used in the threshold function for globally
determinate predicates is ten times the C used for nondeterminate predicates. As
in GC-part, GC is prohibited to be done on one segment consecutively. Each entry
shows the number GCs performed. It is hard to say which one is better. The overhead
on execution time is too low to be measurable in all the executions. In the real
implementation, C is set to be 1000.

1.1 115 2| 4

C=500 | 65| 53 | 37 | 11
C=1000 | 51 | 25| 15| 5
C=2000| 23| 11| 9| 5

Table 2: Comparison of number of GCs performed on different settings.

Table 3 shows the maximum number of postponed inner variables. It is faster to

bp-compiler | boyer | magic
4,622 30 18

Table 3: Maximum number of postponed inner variables.

postpone copying inner variables than to use a bit vector to mark them. Concern-
ing space requirements, postponing is not worse than marking since the number of
postponed variables is usually small compared with the size of the GC area.

6 Concluding Remarks

Although GC has become a mature field that is being taught in many universities,
building a working GC is far more difficult than is usually perceived. There may
exist bugs in the original system that appear only with the existence of GC. The
conditions for correctness of GC may turn out to be false. We thought a GC based
on the incremental algorithm could be completed in one month if not in one week.
We eventually spent far more time than we estimated.

We presented only a GC for the heap. There is a GC for each other area in
B-Prolog including the trail, the stack, and the program area. The necessity of a
GC for the control stack is specific to B-Prolog since some useless frames may stay

on the stack because of delaying. All those frames that are younger than the latest
choice point and are not connected by either the chain of active frames or the chain
of suspension frames are useless and are collected as garbage.

The strategy for determining when to invoke GC is a central research issue. We
proposed a new strategy that improves the one proposed by Older and Rummell. It
uses a threshold function to judge whether GC is worthwhile and it prohibits GC
from being done on one segment consecutively. This strategy cannot be claimed to
be the best, but is satisfactory since for the B-Prolog compiler it collects 90 percent
of the garbage with almost no overhead on execution time.

It is not difficult to find a program for which the strategy would perform badly.
Consider, for example, the following predicate.

p([X|Xs]) :-generateLittleGarbage (X),p(Xs).
p(L).

The call generateLittleGarbage(X) generates a little garbage. After each itera-
tion, a new choice point is created that buries the garbage generated in the previous
iteration. In this way, garbage will be accumulated little by little and GC will not be
done until too late. For this type of programs, global GC is still inevitable.

References

[1] Appleby, K., Carlsson, M., Haridi, S., Sahlin, D.: Garbage Collection for Prolog
based on WAM, Communications of the ACM, Vol.31, No.6, pp.719-741, June,
1988.

[2] Bevemyr, J. and Lindgren, T.: A Simple and Efficient Copying Garbage Collector
for Prolog, UPMAIL Technical Report, No.87, ISSN 1100-0686, 1994.

[3] Demoen, B., Engels, G., and Tarau, P.: Segment Order Preserving Copying
Garbage Collection for WAM Based Prolog, Proc. ACM/SAG, 1996.

[4] Older, W.J. and Rummell, J.A.: An Incremental Garbage Collector for WAM-
Based Prolog, Proc. of JICSLP, pp.369-383, 1992.

[6] Touati, H. and Hama, T.: A Light-Weight Prolog Garbage Collector, Proc. FGCS,
pp.922-930, 1988.

[6] Zhou, N.F.: Parameter Passing and Control Stack Management in Prolog Im-
plementation Revisited, ACM Transactions on Programming Languages and Sys-
tems, Vol.18, No.6, 752-779, 1996.

[7] Zhou, N.F.: A Novel Implementation Method of Delay, Proc. JICSLP’96, pp.97-
111, MIT Press, 1996.

10

