A Novel Implementation Method
of Delay

Neng-Fa Zhou

Faculty of Computer Science and Systems Engineering
Kyushu Institute of Technology

680-4 Kawazu, lizuka, Fukuoka 820, Japan
zhou@mse.kyutech.ac.jp

Abstract

The efficiency of delay depends to a large extent on the following four basic opera-
tions: delay, wakeup, interrupt, and resume. Traditional implementations of delay
in the WAM are slow because three out of the four basic operations need to save
or restore the argument registers. In this paper, we present a novel method for
implementing delay in a Prolog machine called ATOAM. The main idea is to store
delayed calls as frames, called suspension frames, on the control stack rather than
as records on the heap. Since delayed calls, after being woken, can be executed
directly by using their suspension frames, the four basic operations become very
simple. This method had been predicated to cost a large amount of control stack
space. However, with tail-recursion elimination, the control stack space requirement
can be reduced dramatically. This method has been implemented in the B-Prolog
system. For several benchmark programs where delay is used, the experimental re-
sults show that B-Prolog is significantly faster and sometimes consumes much less
total space than SICStus, a WAM-based Prolog system.

1 Introduction

Delay has become a mechanism common to logic [3, 5, 12], functional logic [1, 8],
constraint logic [9, 16], and concurrent logic [13, 14] programming languages. It
relaxes the strict left-to-right computation rule adopted in Prolog and enables the
execution of some predicate calls to be delayed until some variables in them are
instantiated. Delay is an embedded mechanism in concurrent and constraint logic
languages. In concurrent languages, a predicate call that does not carry enough
information for the heads and guards of clauses to be executed will be delayed. In
constraint languages, hard constraints are delayed until they are solvable.

Delay mechanism has been found useful in a wide range of applications. It
can be used to describe perpetual processes and deal with infinite data structures
[14]. It allows a generate-and-test program to be written as a test-and-generate
program [12]. The latter is usually much faster than the former because tests can
be performed as soon as they become testable and failure can be detected early.
Delay mechanism also makes it possible to implement sound versions of negation
and arithmetic [12]. In addition, it has been used to implement various constraint
solvers [7, 10] and concurrent languages [6].

The efficiency of delay depends to a large extent on the following four basic
operations: delay, wakeup, interrupt, and resume. The delay operation delays a
predicate call when the call satisfies a delay condition. The wakeup operation is
executed when some variables in a delayed call are bound. The delayed call becomes

a woken call and is added into the queue of calls that are ready for execution. A
predicate is interrupted when the queue of woken calls is found not to be empty
at certain points of execution. The execution of the interrupted predicate will be
resumed after the woken calls are executed.

Carlsson’s method [3] for implementing delay in the WAM has become the most
popular one due to its simplicity. In order to retain the space saving technique of
the WAM, it stores delayed calls as records on the heap. This idea originates in
Boizumault’s interpreter [2]. In this method, the four basic operations look like:

e Delay: The call to be delayed is created and stored on the heap.

e Wakeup: When some variables in a delayed call are bound, a wakeup event
is signaled and the delayed call, which becomes a woken call now, is added
into the queue of woken calls that are ready for execution.

e Interrupt: At the entry point of every predicate, if there is a wakeup event
happening, the current predicate is interrupted and control is moved to the
woken calls. Before that, an environment frame is pushed onto the control
stack saving the argument registers such that the interrupted predicate can
resume its execution afterwards. To execute each woken call, we have to move
its arguments from the heap to appropriate argument registers.

e Resume: After the execution of woken calls finish, the interrupted predi-
cate will resume its execution by restoring the argument registers from the
environment frame.

This method is slow because three out of the four operations (except for wakeup)
have to save or restore the argument registers.

In this paper, we present a novel method for implementing delay in the ATOAM
[17], an abstract machine for Prolog that differs from the WAM mainly in: (1)
arguments are passed directly into stack frames; (2) only one frame is used for
each predicate call; (3) predicates are translated into matching trees if possible and
indexed on all input arguments. The main idea of the method is to store delayed
calls as frames, called suspension frames, on the control stack rather than as records
on the heap. Since delayed calls, after being woken, can be executed directly by
using their suspension frames, none of the four operations needs to save or restore
the argument registers.

Storing delayed calls on the control stack would suppress the space-saving tech-
nique for the control stack in the WAM. In concrete, the control stack below suspen-
sion frames must be frozen and the frames in the frozen area cannot be released even
if they become useless. However, we found that frames of tail-recursive predicates
can be reused as long as there are no choice points lying on top of them. Although
the tail-recursion elimination technique cannot thoroughly solve the possible control
stack space explosion problem, it can reduce dramatically the control stack space
requirement for well-written programs.

The method has been implemented in the B-Prolog system, an emulator-based
system. The experimental results are surprisingly good. For several benchmark
programs where delay is used, the emulated code of B-Prolog is significantly faster
than the emulated code and can sometimes beat the native code of SICStus. Fur-
thermore, B-Prolog sometimes consumes much less total space than SICStus.

In the next section, we define the delay mechanism. In Section 3, we survey the
main features of the ATOAM. In Section 4, we describe the method for implementing

delay in the ATOAM. In Section 5, we experimentally compare the performance of
B-Prolog with that of SICStus. In Section 6, we conclude the paper.

2 Delay Mechanism

Different constructs, such as freeze in Prolog-II [5], when declaration in NU-Prolog
[12], block declaration in SICStus [15], delay clause in Eclipse [11], bind hook in ESP
[4], have been proposed for describing delay. We consider here delay clause [11]
which is powerful enough for implementing other constructs.

2.1 Delay Clause

Each predicate is defined by optionally several delay clauses followed by a sequence
of definite clauses. A delay clause takes the following form:

delay Head if Condition.
where Head is an atomic formula and Condition is defined recursively as follows:

Condition ::= var(X) |
X\==yY |
Condition,Conditon |
Condition;Condition.

The delay clause can be read as “for any call to the predicate of Head, if it matches
Head, i.e., the call is an instance of Head, and Condition is satisfied, then delay
the call.” Notice that, because matching rather than full unification is used here,
the call will not be updated while delay clauses are executed. Notice also that a
call would not be delayed if it does not match the head of any delay clause. For
example, for the delay clause,

delay p(£(X,X)) if var(X).

the call p(£ (X,X)) will be delayed, whereas the call p(£f(X,Y)) will not be delayed
because p (f (X,Y)) does not match the head.

We assume that predicates containing delay clauses are all determinate for which
no choice point is necessary. This seems to be a restriction, but actually not because
any predicate can be translated into another one that meets this requirement. For
a predicate p(T1,...,Tn) with delay clauses, if it is nondeterminate, then the
predicate can be translated into:

delay clauses.
p(T1,...,Tn) :-p_aux(T1,...,Tn).

where the predicate p_aux(T1,...,Tn) is defined by the original clauses defining
p(T1,...,Tn).

Variables in a call are called suspending variables if the call is delayed because
they are uninstantiated. A delayed call will be woken up when one of its suspending
variables is bound to another term. Since one suspending variable may participate
in multiple delayed calls, there may be multiple woken calls ready for execution at
a time. These calls form a queue. At the entry and exit points of every predicate,
the queue of woken calls is checked. If it is not empty, then the current predicate
is interrupted and control is moved to the woken calls. After the woken calls finish
their execution, the interrupted predicate will resume its execution.

2.2 Implementing freeze by Using Delay Clause

To show the power of delay clause, we consider as an example how to implement
freeze by using delay clause. The primitive freeze(X,p(T1,...,Tn)) delays the
call p(T1,...,Tn) until X is instantiated. The simplest way of implementing freeze
is to define it as:

delay freeze(X,G) if var(X).
freeze(X,G) :-call(G).

The problem with this definition is that delayed calls must be created on the heap.
To deal with it, we propose to compile calls of freeze as follows: First replace
freeze(X,p(T1,...,Tn)) with p_aux(T1,...,Tn) where p_aux is a new predicate
symbol, and then define the predicate p_aux as follows:

delay p_aux(T1,...,Tn) if var(X).
p_aux(T1,...,Tn) :-p(T1,...,Tn).

This process is repeated until no call to freeze exists. For example, the call
freeze(X,freeze(Y,p(X,Y)))

which will be delayed if either X or Y is uninstantiated, is replaced with a call
p1(X,Y) which is defined as follows:

delay p1(X,Y) if var(X).
pl1(X,Y):-p2(X,Y).

delay p2(X,Y) if var(Y).
p2(X,Y) :-p(X,Y).

By folding the calls to p2, we get,

delay p1(X,Y) if var(X).
delay p1(X,Y) if var(Y).
p1(X,Y):-p(X,Y).

3 The Prolog Abstract Machine ATOAM

This section briefly surveys the architecture of the ATOAM. The detailed descrip-
tion of the architecture and its advantages over the WAM can be found in [17].

The ATOAM uses all the data areas used by the WAM. The heap stores terms
created during execution. The trail stack stores those variables that must be un-
bound upon backtracking. The control stack stores frames associated with predicate
calls. Each time when a predicate is invoked by a call, a frame is placed on top
of the control stack unless the frame currently on top of the control stack can be
reused.

Predicates are classified into flat, nonflat, and nondeterminate ones !. The struc-
tures of frames differ for different types of predicates. The frame for nondeterminate
predicates contains the following fields:

1Each clause is divided into two parts: a condition on the calls to which the clause is applicable
and all other remaining calls. A predicate is said to be determinate if: for each clause, if it is
applicable to a call then the remaining clauses need not be tried for the call; and nondeterminate
otherwise. A determinate predicate is said to be flat if the condition of any clause in it consists of
only inline tests; and nonflat otherwise.

arguments

AR

CPS

TOP

CPF

B

H

T
local vars

The AR slot points to the parent frame; the CPS slot stores the continuation program
point to go to on success; the TOP slot points to the top of the control stack; the
B slot points to the frame of the latest predecessor of the call that has alternative
program points to be tried; the CPF slot stores the alternative program point to go
to after a branch in the predicate fails; the H slot points to the top of the heap and
the T slot points to the top of the trail stack. The frames for nonflat predicates do
not contain the H and T slots and the frames for flat predicates do not contain B,
CPF, Hand T.

In the following, we will denote arguments as A;, As and so on, and local
variables as Y7, Y5, and so on. In fact, arguments and local variables are identified
internally by different offsets with respect to the AR slot. We will call the frame of
a nondeterminate predicate deep choice point, and the frame of a nonflat predicate
shallow choice point.

The current machine status is indicated by the following group of registers.

P: Current program pointer

TOP: Top of the control stack

AR: Current frame

H: Top of the heap

T: Top of the trail stack

DB: Latest deep choice point

SB: Latest shallow choice point

HB: H slot of the latest deep choice point

The last three registers need further explanation. The DB register points to the
latest deep choice point. The SB register points to the latest shallow choice point.
When a failure occurs, DB and SB are compared. If DB is younger than SB, then
deep backtracking is invoked; otherwise, shallow backtracking is invoked. DB and
SB never have the same contents.

The HB register is used in checking whether or not a variable needs to be trailed
when the variable is bound. It always holds the content of the H slot in the latest
deep choice point. When a variable is bound, if it is older than HB or DB, then it
must be trailed.

4 Delay in the ATOAM

In this section, we show how to implement the delay mechanism in the ATOAM. We
first show how suspending variables and delayed calls are represented, then define
the four basic operations, and finally describe the changes in memory management.

arguments
AR
CPS
TOP
SYM
PREV
NEXT

local vars

Figure 1: Suspension frame.

4.1 Suspending Variables and Delayed Calls

To implement the delay mechanism in the ATOAM, we introduce a new data type,
called SUSP, for representing suspending variables. Each suspending variable is
stored on the heap as a record with two fields:

Pointer ‘SUSP
DCS

The first field is a self-pointing pointer tagged with SUSP, and the second field DCS
points to a list of delayed calls related to the variable. Each delayed call is simply
represented as a pointer to its suspension frame on the control stack. Binding
a suspending variable to a term means destructively updating the first field and
letting it point to the term. If the suspending variable is older than HB, then the
pair of the address and the old value is pushed onto the trail stack.

A suspension frame looks like a frame for a determinate predicate but contains
three new slots (see Figure 1). All the suspension frames are connected by a doubly
linked list. The Prev slot points to the previous, and the Next slot points to the
next suspension frame. The slot SYM stores the predicate symbol with which the
predicate can be reentered. A new register, called SF, is introduced that points to
the latest suspension frame.

A suspension frame may be in one of the following states: start, sleep, woken,
and exit. These states are illustrated in Figure 2. After a suspension frame is
created, it enters the start state immediately. At this time, the three slots SYM,
PREV and NEXT have not yet been filled in. When no delay clause succeeds, the state
changes into exit. When some delay clause succeeds, the frame is connected into
the list of suspension frames (the three slots SYM, PREV, and NEXT are filled in) and
the state changes to sleep. In sleep state, the slots AR and CPS lose their meaning.
When a suspending variable in the suspension frame is bound in unification, the
state changes from sleep to woken. In this state, the three slots SYM, PREV and
NEXT remain unchanged, and the frame is connected to the list of active calls being
executed (AR and CPS are filled in). Executing the woken call may result in two
cases: (1) some delay clause succeeds and the woken call is redelayed; and (2) no
delay clause succeeds and the state changes to ezit.

Notice that the data structures for suspending variables and suspension frames
facilitate the basic operations. It is easy to find all the delayed calls related directly
to a given suspending variable. With the SYM and arguments in a suspension frame,
it is possible to construct the delayed call as a structure and print it out. In addition,
it is easy to check termination: some calls are delayed if SF is not empty.

redelay

wakeup

Figure 2: Diagram of state transition.

4.2 Delay

The compiled code for a predicate p/n with a delay clause is as follows:

p/n: allocate_susp N
conditional jump instructions
susp_var instructions
delay p/n
L: end_delay
code for other clauses

The code for the delay clause consists of one or more conditional jump instructions
followed by several susp_var instructions. It will move control to L if the delay
condition is not satisfied. Each susp_var instruction corresponds to a call var (X) in
the body of the delay clause. The allocate_susp, susp_var, delay and end_delay
are newly introduced instructions, which are defined as follows:

e allocate_susp N
This instruction moves the control stack pointer TOP to keep enough space for
the predicate. It also fills in the TOP slot and initializes the state of the frame
to be start.

e susp_var Z
This instruction lets Z be a suspending variable and the current call be a
delayed call in the DCS of the variable.

e delay p/n

This instruction is executed after a delay clause succeeds. It changes the state
of the current frame into sleep. When the current frame is in start state, then
this instruction fills in the SYM slot with p/n, connects the current frame into
the list of suspension frames, and returns control to the caller. Otherwise, if
the current frame is in woken state, then control is returned to the caller with
nothing done to the suspension frame. These two cases are illustrated by the
two arcs in Figure 2 labeled with delay and redelay respectively.

e end delay
This instruction is executed after all the delay clauses in a predicate fail. It
turns the state of the current frame from either start or woken to exit. When
the current frame is woken, then it has to be disconnected from the list of
suspension frames.

Consider, for example, the following predicate:

delay p(X,Y) if var(X);var(Y).
pX,Y) :-X>Y.

The compiled code is:

p/2: allocate_susp 6
jmpn_var A1,L1 Y% code for delay clause
susp_var Al
delay p/2
L1: jmpn_var A2,L2
susp_var A2
delay p/2
L2: end_delay
jmpn_gt A1,A2,F % F is the label for failure handler
return

When either of the arguments is a variable, the call will be delayed.

4.3 Wakeup Event

When a suspending variable is bound, a wakeup event will be signaled and the
suspending variable becomes a trigger variable. We introduce a new register, called
TRIGGER, that points to the list of trigger variables.

The unification procedure unify(T1,T2) is modified as follows to take suspend-
ing variables into account:

1. if T1 is a Prolog variable and T2 is a suspending variable, then bind T1 to T22.

2. if one of the two arguments is non-variable and the other is a suspending
variable, then bind the suspending variable to the non-variable term.

3. if T1 and T2 both are suspending variables, then create a new suspending
variable whose DCS points to the concatenation of the two lists associated
with T1 and T2, and bind T1 and T2 to the new variable.

4.4 'Wakeup Event Handler

Figure 3 shows the pseudo-code of the wakeup event handler. Recall that delayed
calls in DCS of each trigger variable are actually pointers to their suspension frames
on the control stack. The event handler connects the woken calls and the frame of
the interrupted predicate into a chain and execute the calls in the chain one by one.
The program point to execute for each woken call Frame is computed as follows:

P = entrypoint(Frame->SYM)+sizeof (allocate_susp);

Since the frame used to execute the woken call already lies on the control stack, the
allocate_susp instruction must be skipped. After the woken calls are connected
into the chain of calls, there is no difference between them and usual predicate
calls. Thus, signaling another wakeup event during the execution of woken calls is
permitted.

2Exercise: T2 should to assigned to T1 after the tag SUSP is removed. Why?

Wakeup_Event_Handler:
for each trigger variable in TRIGGER do
remove the variable from TRIGGER;
for each frame Frame in DCS of the variable do
if Frame is in sleep state then
Frame->AR = AR;
Frame->CPS = P;
AR = Frame;
P = entrypoint (AR->SYM)+sizeof (allocate_susp);
change state of Frame to woken;
endif
enddo
enddo

Figure 3: Wakeup event handler.

4.4.1 How are woken calls scheduled?

The chain of calls is constructed on a first-come-first-served basis. The earlier a
suspending variable became a trigger variable, the earlier its woken calls will be
executed. For each trigger variable, the earlier a woken call entered the DCS, the
earlier it will be executed.

4.4.2 How to resume the interrupted predicate?

Nothing special is necessary to resume the execution of the interrupted predicate.
After the execution of the woken calls, control will be moved smoothly to the inter-
rupted predicate.

4.4.3 When to invoke the wakeup event handler?

At the entry and exit points of any predicate, the list of trigger variables is checked.
If it is not empty, then the current predicate is interrupted and control is moved to
the woken calls of the trigger variables. In general, no choice point can be created
between the point where a wakeup event is signaled and the point where the event
is handled. To obey this principle, we must take care to ensure that the wakeup
event handler is invoked before a choice point is created at the entry point of a
nondeterminate predicate.

There is an allocate_nondet instruction at the entry point of a nondeterminate
predicate that allocates a choice point. If the wakeup event handler is invoked after
a choice point is created, then the behavior of the program may become strange.
The following example illustrates this situation.

go:—freeze(X,p(X)),X=[Y],q(X) ,write(X).
p(X):-X=[f(a)].

q(X):-fail.
q(X).

The correct output of this program is [f (a)]. However, if the wakeup event signaled
by X=[Y] is handled after the choice point for q/1 is created, then the output would
be [Y] where Y is an unbound variable. The reason for this abnormal phenomenon
is that the unification X=[f(a)], i.e. [Y]=[f(a)], is done after the choice point of
q/1 is created, and the value bound to Y is lost upon backtracking.

To deal with this problem, we split the allocate_nondet instruction into two:
allocate_flat and flat_to_nondet. The allocate_flat instruction, which already exists
in the ATOAM, allocates a flat frame and checks the wakeup event signal. The
flat_to_nondet instruction changes the frame from flat to nondeterminate by saving
the status registers. Notice that some woken calls may be executed between these
two instructions and some choice points or suspension frames may be left on the
control stack. Thus, when flat_to_nondet is executed, the current frame may not
be the top-most one. In this case, the flat_to_nondet instruction has to copy the
current frame to the top of the control stack.

4.4.4 How to skip woken calls that have already been executed?

Since a call may be delayed due to multiple suspending variables, when it is woken, it
might have already been executed. Consider, for example, the inequality constraint
on finite-domain variables X # Y. The propagation procedure for the constraint
can be defined as follows:

delay inequality(X,Y) if var(X),var(Y).
inequality(X,Y) : -nonvar(X) ,nonvar(Y),!,X\==Y.
inequality(X,Y) :-nonvar(X),!,exclude_value(Y,X).
inequality(X,Y) :-exclude_value(X,Y).

The constraint inequality(X,Y) is delayed when both X and Y are variables. Sup-
pose initially X and Y are variables. After X is assigned a value, the constraint is
woken and X is excluded from Y’s domain by exclude value(Y,X). When, however,
Y is assigned a value afterwards, the constraint need not be executed again. To
handle this situation, we check to see whether or not the frame for a woken call is
in sleep state. If not, we skip the woken call.

4.5 Memory Management

The management of the trail and control stacks are changed to support delay mech-
anism. We now describe these changes.

4.5.1 Trail Stack

Like in the WAM, the trail stack in the original ATOAM contains addresses of
variables that need be reset to unbound upon backtracking. This address-only
trailing scheme is not adequate now because updates to the list of suspension frames
SF and the DCS field of suspending variables can be undone only when the old values
of modified cells are available. For this reason, the trail stack of the ATOAM is
made to contain address-value pairs.

Several trailing schemes have been proposed to trail destructive updates. In
ECRC Prolog [11], three trail stacks are used. In some implementations of constraint
languages, the trail stack is designed to contain tagged elements where the tag of
each element determines whether the element is only an address or a pair of an
address and a value. We adopt the address-value trailing scheme because this

scheme is simple and imposes only minor overhead (2 to 3 percent) to standard
Prolog programs.

4.5.2 Control Stack

In the original ATOAM, each time when a predicate is invoked by a call, a frame is
placed on top of the control stack unless the frame currently on top of the control
stack can be reused. Consider the following clause

p([X|Xs]) :-foo(X),q(Xs).

If there is no clause in the predicate remaining to be executed after the clause fails
and foo(X) never leave choice points behind after its execution, then the frame for
the head predicate is determined to lie at the top of the control stack and thus can
be reused by q(Xs). However, with delay, things are not so simple. Some woken
calls may be executed at the entry point and foo(X) may create some suspension
frames on the control stack. For this reason, it has to be checked at run time
whether the current frame is at the top. If not, a new frame has to be allocated for
the tail call q(Xs).

The rule for frame reusage can be relaxed to enable non-top-most frames to
be reused. For tail-recursive predicates, if the current frame is a determinate one
and there is no choice point younger than it, then tail-recursive calls can reuse the
frame. This means that frames of tail-recursive predicates can be reused as long as
there are no choice points lying on top of them. The revised rule for frame reusage
is very important to limit the space explosion of the control stack. Consider the
coroutines:

consume (X) ,produce(X) .

where consume and produce are defined tail-recursively, and consume is delayed
when no data is available and is invoked as soon as there are data available. If both
predicates are determinate, then the program only requires constant stack space.

4.6 Summary

In our method, the four basic operations for delay look like:

e Delay: The frame of the current call is connected to the list of suspension
frames if the call is delayed first time.

e Wakeup: The suspending variable that was bound is added into the list of
trigger variables TRIGGER.

e Interrupt: The frames for the woken calls are connected into a chain such
that the woken calls can be executed one by one.

e Resume: After the list of woken calls is executed, control will be moved
smoothly to the interrupted predicate.

Except when the interrupted predicate is nondeterminate and some woken calls
leave choice point or suspension frames on the control stack, no argument needs be
moved.

To support the delay mechanism, we modified the ATOAM in the following
aspects:

e A new data type, called SUSP, is introduced for representing suspending vari-
ables. The unification procedure is modified to take suspending variables into
account.

e The following two new registers are introduced: SF pointing to the latest
suspension frame, and TRIGGER pointing to the list of trigger variables.

o The following four new instructions are introduced: allocate_susp, susp_var,
delay, and end_delay.

e The management of the trail and control stacks is modified as described in
the previous Subsection. In addition, the semantics of some instructions of
the ATOAM are modified such that the wakeup event signal can be checked
at the entry and exit points and the top of the control stack can be computed
correctly at the exit point of every predicate.

5 Performance Evaluation

We have implemented the method described in this paper in B-Prolog, an emulator-
based Prolog system, and compared the performance of B-Prolog with that of SICS-
tus Prolog Version 3.0. For standard Prolog programs, B-Prolog is about 35 percent
faster than the emulated code (SP-bc) and 40 percent as fast as the native code
(SP-nc) of SICStus on a SPARC-10%.

5.1 Benchmark Programs
The following benchmark programs were tested:

e nreverse The well known naive reverse program where the call to append is
placed before the call to nreverse and calls to append are delayed if the first
list to be concatenated is a variable. The size of the given list to be reversed
is 500.

e queens A test-and-generate program for finding all solutions to the 8-queen
problem, where the test-part generates a series of inequality constraints and
the generate-part assigns values to variables. Each inequality constraint is
invoked as soon as both of its arguments become ground.

¢ sendmory A test-and-generate program for solving the puzzle SEND + MORE
= MONEY.

e psort The naive sort program that first generates constraints on all pairs of
consecutive elements in the sorted list and then permutes the given list. The
size of the input list is 15.

5.2 Execution Time

Table 1 shows the ratios of the cpu times taken by SICStus to those taken by B-
Prolog. The numbers in the parentheses indicate the cpu times in seconds. We
compared different constructs for describing delay available in the two systems. We
used freeze/2 and delay clause for B-Prolog, and freeze/2 and block declaration

3Both systems were compiled by using “CC -O”.

program B SP-bc SP-nc
delay & freeze | block | freeze | block | freeze
nreverse 1(0.30s) 837 | 28.67 | 5.83 | 10.23
queens 1(0.23s) 222 | 13.87 | 1.00 | 3.00
sendmory 1(7.71s) 1.96 | 10.71 | 1.35 | 5.29
psort 1(2.42s) 2.31 13.26 | 0.90 2.20

Table 1: Ratios of cpu times.

program | Control | Heap Trail | Total
nreverse 033 | 739 | 12525 | 7.19
queens 0.37 | 2.87 0.26 | 0.70
sendmory 0.55 1.46 0.30 0.74
psort 0.38 | 1.64 0.38 | 0.95
Table 2: Ratios of space requirements (25).

for SICStus. While using freeze and delay clause does not cause much difference
in execution time in B-Prolog, using block declaration is much faster than using
freeze/2 in SICStus.

For the four programs, B-Prolog is significantly faster than SP-bc and can in
most cases beat SP-nc. The speed-ups are due mostly to the novel implementation
method of delay adopted in B-Prolog. For the original nreverse program without
delay, B-Prolog is only 45 percent faster than SP-bc.

Tt is difficult to tell to what extent delay affects the execution time because to do
so we have to get rid of the time taken to run predicates that never delay. However,
as more than 90 percent of the predicate calls in nreverse delay in execution, the
ratios in the row for nreverse roughly tells us about the difference between the
performance of the two systems.

5.3 Space Efficiency

Table 2 compares the space requirements for various stacks. SICStus uses two sepa-
rate stacks, namely, the environment stack and the choice point stack, to represent
the control stack in the WAM. The control stack space stands for the sum of the
two stack spaces. In this comparison, we used delay clause for B-Prolog and block
declaration for SICStus.

B-Prolog consumes more control stack space than SICStus because delayed calls
are stored on the control stack. It takes at least n + 6 cells to store a delayed call
with n arguments. In contrast, SICStus consumes more heap space than B-Prolog
because delayed calls are stored on the heap. It takes n + 1 to store a delayed call
with n arguments. In total, B-Prolog consumes much less space than SICStus for
nreverse. Two reasons can be given. First, the tail recursion elimination technique
is retained which can prevent the control stack space explosion from occurring for
nreverse. Second, during forward execution, useless suspension frames can be
reused in the ATOAM, whereas, delayed calls stored on the heap in the WAM all
become garbage after their execution. For the remaining three programs, B-Prolog

consumes a little more space in total than SICStus. This is because these programs
are all in test-and-generate style and no suspension frames can be reused.

6 Discussion

Although the space efficiency of our method is not so bad compared with that of
SICStus for the benchmark programs, our strategy for frame reusage is still too
weak to prevent control stack space explosion from occurring. Recall the producer
& consumer program and see what would happen if both the producer and the
consumer are mutually defined predicates. The consumer is delayed before the
producer produces any data and a suspension frame is pushed onto the control
stack. The producer, after being invoked, first has a frame pushed onto the control
stack and then repeatedly produces data. After one item of data is produced,
the consumer will be woken. Because the consumer is not a tail-recursively defined
predicate, another new frame has to be pushed on top of the frame for the producer.
In this way, no frame can be reused and thus linear size space will be required.

To deal with the space explosion problem, we eventually need a control stack
garbage collector that can collect useless frames and move useful frames to the
bottom end of the control stack. Garbage collection for the control stack can be
done much more quickly than that for the heap because no pointers in other areas
reference the control stack. The further work is to develop the garbage collector
and investigate its impacts on the performance of the system for a large number of
benchmark programs.

Acknowledgement

I am grateful to Mats Carlsson for answering my questions about how to get the data
from SICStus-Prolog and the three referees for helpful comments on the presentation
and performance evaluation.

References

[1] Ait-Kaci, H.: Functions as Passive Constraints in LIFE, ACM Transactions on
Programming Languages and Systems, 16:1279-1318, 1994.

[2] Boizumault, P.: A General Model to Implement DIF and FREEZE, Proc. 3rd
ICLP, 585-592, 1986.

[3] Carlsson, M.: Freeze, Indexing, and other Implementation Issues in the WAM,
Proc. 4th ICLP, 40-58,1987.

[4] Chikayama, T.: ESP Reference Manual, Technical Report TR-044, ICOT,
1984.

[5] Colmerauer, A.: Equations and Inequations on Finite and Infinite Trees,
Proc. of the International Conference on Fifth Generation Computer Systems
(FGCS’84), ICOT, 85-99, 1984.

[6] Debray, S.K.: QD-Janus: A Sequential Implementation of Janus in Prolog,
Software - Practice and Experience, 23:1361-1377, 1993.

[7]

8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

De Schreye, D., Pollet, D., Ronsyn, J., Bruynooghe, M.: Implementing finite-
domain constraint logic programming on top of a PROLOG-system with delay-
mechanism, Proc. ESOP ’90. 8rd European Symposium on Programming, 106-
117, 1990.

Hanus, M.: The Integration of Functions and Logic Programming: From The-
ory to Practice, Journal of Logic Programming, 19/20:583-628, 1994.

Jaffar, J. and Maher, M.J.: Constraint Logic Programming: A Survey, Journal
of Logic Programming, 19/20:503-581, 1994.

Kawamura, T., Ohwada, H., Mizoguchi, F.: CS-prolog: a Generalized
Unification-based Constraint Solver, Proc. Logic Programming Conference, 19-
39, 1988,

Meier, M.: Better Late Than Never, Implementations of Logic Programming
Systems, Tick E. and Succi, G., Eds., Kluwer Academic Publishers, 1994.

Naish, L.: Negation and Control in Prolog, Lecture Note in Computer Science,
238, 1985.

Saraswat, V.A.: Concurrent Constraint Programming, MIT Press, 1993.
Shapiro, E. (Ed.) : Concurrent Prolog, MIT Press, 1987.

SICStus Prolog User’s Manual, Programming Systems Group, Swedish Insti-
tute of Computer Science, 1995.

Van Hentenryck, P. : Constraint Satisfaction in Logic Programming, MIT
Press, 1989.

Zhou, N.F.: Parameter Passing and Control Stack Management in Pro-
log Implementation Revisited, available through anonymous ftp from
ftp.kyutech.ac.jp in the directory /pub/Language/prolog, an early version ap-
pears in Proc. ICLP’9/, 159-173, 1994.

