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Abstract  Constraint Logic Programming (CLP) defines a family of programming
languages that extend Prolog to support constraint solving over certain
domains. Current state-of-the-art CLP systems are based on abstract
machines or language constructs that are good for certain domains and
propagation algorithms but are either not sufficiently expressive or in-
efficient for some other domains and propagation algorithms. B-Prolog
provides a construct, called action rules, for programming interactive
agents such as constraint propagators. As far as constraint propagation
is concerned, an agent maintains dynamically a certain level of con-
sistency for a constraint. This paper presents constraint solvers imple-
mented in action rules for six domains, namely, finite-domains, Boolean,
trees, lists, sets, and floating-point intervals. Some of the solvers such
as the finite-domain and set solvers are competitive in performance with
the fastest solvers available now.

Keywords: Constraint propagation, constraint solving, constraint logic program-
ming, and action rules.

1. Introduction

Constraint Logic Programming (CLP) defines a family of program-
ming languages that extend Prolog by replacing unification of Herbrand
terms with constraint solving over certain domains [11, 26]. Various ab-
stract machines and language constructs have been proposed for imple-
menting constraint solvers. Most languages are designed for a particular
domain. For example, there are extended WAMs [2] for constraint solv-
ing over finite-domains [1, 9], reals [25], and floating-point intervals [29].
The drawback of these languages is a lack of flexibility and extendibility.
CHR (Constraint Handling Rules) [17] is a high-level language for imple-
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menting propagation-based constraint solvers. However, a fast compiler
for CHR is yet to be implemented. Now, constraint solvers implemented
in CHR are an order of magnitude slower than constraint interpreters
implemented in low level languages.

B-Prolog [38, 40] provides a powerful language construct, called action
rules, for programming interactive agents. An action rule specifies a
pattern for agents, an action that the agents can carry out, and an
event pattern for events that can activate the agents. An agent is like
a sub-goal in Prolog that behaves in an event-driven manner. An agent
can be suspended when certain conditions on it are satisfied and can be
activated to take its actions when certain events are posted. The action
rule language combines goal-oriented and event-driven execution models,
and is suitable for programming interactive agents such as constraint
propagators. As far as constraint propagation is concerned, an agent
maintains dynamically a certain level of consistency for a constraint.

The merits of action rules over most other languages are: (1) it is
high-level and therefore easy to learn and use; (2) it is flexible and
facilitates implementation of various kinds of propagation algorithms;
(3) it is efficient because it is compiled; and (4) it provides a convenient
platform for end-users to program problem-specific algorithms.

This paper presents constraint solvers implemented in action rules
for six domains, namely finite-domains, Boolean, trees, lists, sets, and
floating-point intervals. For each domain, the representation scheme of
domain variables and sample propagation rules are given.

2. Action Rules in B-Prolog

An action rule takes the following form:
<Agent> <Condition> {<Event>} ’=>’ <Action>

where Agent is an atomic formula that represents a pattern for agents,
Condition is a sequence of conditions on the agents, Event is a set of
patterns for events that can activate the agents, and Action is a sequence
of actions performed by the agents when they are activated.

All conditions in Condition must be in-line tests. The event set
Event together with the enclosing braces is optional. If an action rule
does not have any event patterns specified, then the rule is called a
commitment rule. A set of built-in events is provided for programming
constraint propagators and interactive graphical user interfaces. For
example, ins(X) is an event that is posted when the variable X is in-
stantiated and dom(X,E) is posted when an inner element E is excluded
from the domain of the finite-domain variable X. A user program can
create and post its own events and define agents to handle them. A
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user-defined event takes the form of event (X,T) where X is a variable,
called a suspension variable, that connects the event with its handling
agents, and T is a Prolog term that contains the information to be trans-
mitted to the agents. If the event poster does not have any information
to be transmitted to the agents, then the second argument T can be
omitted. The built-in action post (E) posts the event E.

When an agent is created, the system searches in its definition for a
rule whose agent-pattern matches the agent and whose conditions are
satisfied. This kind of rules is said to be applicable to the agent. Notice
that since one-directional matching rather than full-unification is used
to search for an applicable rule and no variable in the conditions can be
instantiated, the agent will remain the same after an applicable rule is
found.

The rules in the definition are searched sequentially. If there is no rule
that is applicable, the agent will fail. After an applicable rule is found,
the agent will behave differently depending on the type of the rule.

If the rule found is a commitment rule in which no event pattern is
specified, the actions will be executed. The agent will commit to the
actions and a failure of the actions will lead to the failure of the agent.
A commitment rule is similar to a clause in concurrent logic languages,
but an agent can never be blocked while it is being matched against the
agent pattern.

If the rule found is an action rule, the agent will be suspended until it
is activated by one of the events specified in the rule. When the agent is
activated, the conditions are tested again. If they are met, the actions
will be executed. A failure of any action will cause the agent to fail.
The agent does not vanish after the actions are executed, but instead
turns to wait until it is activated again. So, besides the difference in
event-handling, the action rule “H,C,E => B” is similar to the guarded
clause “H :- C | B, H”, which creates a clone of the agent after the
action B is executed.

Let post(E) be the selected sub-goal. After E is posted, all agents
waiting for E will be activated. In practice, for the sake of efficiency,
events are postponed until before the execution of the next non-inline
call. At a point during execution, there may be multiple events posted
that are all expected by an agent. If this is the case, then the agent has
to be activated once for each of the events.

There is no primitive for killing agents explicitly. As described above,
an agent never disappears as long as action rules are applied to it. An
agent vanishes only when a commitment rule is applied to it.
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Suspension variables

A suspension variable is a variable to which there are suspended agents
and some other information attached. Suspension variables are useful
for implementing user-defined domains. The call

susp_attach_term(X,T)

attaches the term T to the variable X. The formerly attached term to
X, if any, will be lost after this operation. This operation is undone
automatically upon backtracking. In other words, the originally attached
term will be restored upon backtracking. The call

susp_attached_term(X,T)

gets the current term T attached to the variable X. In this paper, we use
the notation X~attached for the term attached to X.

Suspension variables are similar to attribute variables [24], but do not
rely on goal expansion to define the behaviors associated with them.
Whenever a suspension variable X is bound to another term, which may
be another variable, the event ins(X) will be posted. The user can
specify the action to be taken after a suspension variable is bound, but
not the action to be taken before unification takes place.

The following example illustrates the use of suspension variables:

create_fd_variable(X,D) =>
susp_attach_term(X,D),
check_member (X,D).

check_member (X,D) ,var(X) ,{ins(X)} => true.
check_member (X,D) => member(X,D).

This is a simple implementation of finite-domain variables. The agent
check_member (X,D) is suspended when X is a variable. When X is instan-
tiated, the agent is activated to check whether the value assigned to X is
a member of D. In a real implementation, unification of two finite-domain
variables should be considered as well.

3. Implementing Constraint Solvers in Action
Rules

In the CLP family, CLP(X) is a language that supports constraint
solving over the domain X. Most CLP systems introduce new operators
for expressing constraints rather than extending the unification opera-
tor. In this paper, we use self-explainary mathematical symbols for con-
straints. Operators are usually generic and their interpretation depends
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on the types of the constraint expressions. For this reason, the users are
required to provide the information about the types of variables.

The type of each variable can be known from its domain declaration
or can be inferred from its context. The domain of a variable is declared
by a call as follows:

V::D

where V is a variable and D is a range L. .U of values, where L is the lower
bound and U is the upper bound. One of the bounds can be omitted if it
is unknown, but not both. The type of V is determined by the bounds.
For example, 1..3 denotes a set of integers from 1 to 3, 1.. a set of
positive integers, [1..[_,_,_]1 a set of lists of up to three elements,
{}..{a,b,c} a set of all subsets of {a,b,c}, and 0.0.. a set of non-
negative floating-point numbers. For finite-domain variables, D can be a
list of ground terms. So, V :: [a,b,c] says that X can be a, b, or c.

We only consider propagation-based solvers. Constraint propagation,
which is a technique originated in Artificial Intelligence [28, 36] for solv-
ing constraint satisfaction problems, works as follows: Whenever the
constraint store is changed, e.g., new constraints are added or the domain
of a variable in some constraint is updated, it propagates the change to
other constraints to attempt to exclude those no-good values from the
domains of variables that can never be a part of a solution. Constraint
propagation is an iterative procedure that continues until no further
change can be made to the constraint store.

For most problems, propagation alone is inadequate for finding a so-
lution, and the divide-and-conguer or relazation method is usually nec-
essary for finding a solution. The call

indomain (V)

finds a value for V either by enumerating the values in V’s domain or by
splitting the domain. After a variable is instantiated, the propagation
procedure will be invoked again.

In this section, we describe how to implement in action rules constraint
solvers over six different domains, namely finite domain, Boolean, trees,
lists, sets, and floating-point intervals.

3.1.  CLP(FD)

CLP(FD), the member of the CLP family that supports finite-domain
constraints, may be the most successful member in the CLP family. A
large number of applications ranging from design, scheduling, to configu-

ration have been developed [15, 37|, and many implementation methods
have been explored [1, 7, 9, 19, 33, 39].



A finite domain variable is represented as a suspension variable with
an attached term of the following form:

fd(First,Last,Size,Elms)

The arguments refers to, respectively, the first element, the last element,
the number of remaining elements, and a data structure that represents
the elements in the domain. The last argument may be a bit vector or
a hashtable that tells the status of each element in the domain.

An event will be posted whenever the domain of a variable is updated.
For a domain variable X, instantiating X posts the event ins (X), updating
the bound of the domain posts bound (X) if the domain contains only
integers, and excluding any inner element E from the domain posts the
event dom(X,E).

Action rules extend delay clauses [39] and can be used to implement
various kinds of propagation algorithms for finite-domain constraints.
The following shows the implementation of the arc consistency rule for
the constraint X = Y+C where X and Y are integer domain variables and
C is an integer:

’X=Y+C_arc’ (X,Y,C) : -
’X in Y+C_arc’(X,Y,C),
C1 is -C,
’X in Y+C_arc’ (Y,X,C1).

’X in Y+C_arc’(X,Y,C),var(X),var(Y),{dom(Y,Ey)} =>
Ex is Ey+C,
fd_exclude (X,Ex) .

’X in Y+C_arc’(X,Y,C) => true.

The propagator X in Y+C_arc’(X,Y,C) maintains arc consistency for X
in the constraint. Whenever an element Ey is excluded from the domain
of Y, it excludes Ex, the counterpart of Ey, from the domain of X.

3.2. CLP(Boolean)

CLP(Boolean) can be considered as a special case of CLP(FD) [10]
where each variable has a domain of two values. We use 0 to denote false,
and 1 to denote true. A Boolean expression is composed of constants
(0 or 1), Boolean domain variables, basic relational constraints, and the
operators. Since constraints can be operands in a Boolean expression,
it is possible to use a Boolean variable to indicate the satisfibility of a
constraint. For example, the constraint (X = Y) <=> B says that X and
Y are equal iff B is equal to 1. This technique, called reification, is useful
for implementing global constraints such as cardinality constraints.
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It is possible to implement various kinds of propagators with different
powers in action rules. For example, for the constraint (X = Y) <=> B,
one simple propagator is to delay the evaluation until either B is ground
or both X and Y become ground. A more powerful propagator would
add the constraint B = 0 once the domains of X and Y are known to be
disjoint.

3.3. CLP(Tree)

Prolog can be considered as a CLP language over trees. The unifica-
tion T1=T2 finds a valuation, called unifier, for the variables in the terms
such that T1 and T2 become identical after each variable is replaced with
its substitute. Prolog does not support disequality constraints over trees.
The built-in  T1\=T2 is equivalent to not(T1=T2), which may fail even
if T1 and T2 represent two different terms. For instance, the query

£(X) \= £(Y), X=a, Y=b

fails in Prolog. Prolog-II [12] and many others support disequality con-
straints over trees. These systems delay the evaluation of disequality
constraints until the variables in the terms are instantiated sufficiently
[6]. Since action rules extend the delay constructs, it is possible to im-
plement disequality constraints over trees in a similar way.

3.4.  CLP(List)

CLP(List) hasn’t received as much attention as CLP(FD) and now
few systems support constraints over lists. Nevertheless, CLP(List) is
becoming popular as it is found useful in string processing such as the
analysis of bio-sequences [16] and the processing of XML documents.
Propagation rules for list constraints are yet to be explored. In Prolog-
ITI, which may be the only CLP language that supports list constraints
now, a concatenation constraint is delayed until the lengths of the partic-
ipating lists are fixed. In [16], an implementation of a pattern language
is given that adopts the backtracking algorithm. We propose a solver
for CLP(List) that integrates propagation with string pattern matching.

For list domains, the following notations are used. E1+E2 denotes the
concatenation of E1 and E2, V" [I..J] the sublist of V from the Ith to
the Jth positions where I and J can be variables, V= [I] the Ith element,
and |V| the length of V.

A list domain variable V can be represented as a suspension variable
with an attached term of the following form:

list(Length,Value,IndexTable,SuperLists)
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where the arguments have the following meanings: Length is an integer
domain variable that indicates the length of V. Value the prefix of V that
is already known. Value evolves from a variable to a complete list with
a fixed length while information about V is accumulated. IndexTable
is a hashtable that facilitates the access of particular list elements. For
each element E at the Ith position in Value, there is a pair (I,E) in
IndexTable. SuperLists represents a list of super lists of which V is a
sublist. For each super list SL of V, there is an element (Start,SL) in
SuperLists where Start indicates the starting position of V in SL. This
representation of list domains facilitates translating list constraints into
finite-domain constraints.

The sublist constraint A~ [I..J] = B is interpreted as follows: B be-
comes a sublist of A whose starting position in A is I and whose length is
equal to J-I+1. Whenever an element of B becomes sufficiently instan-
tiated, the matching algorithm is invoked to reduce the possible values
for I and J. For example, suppose A is the list [b,c,a,a,d,a] and B’s
current value is the incomplete list [B1,_|_]. Once B1 is bound to a,
the set of possible starting positions for B in A is narrowed to [3,4].

The concatenation constraint A+B = C entails the following: A is a
sublist of C starting at 1, B is a sublist of C starting at [A|+1, and
[Al+]B| = [CI.

The call indomain(V) searches for a value that is a sublist of all the
super lists of V. The accumulated constraints on V are used to guide the
string pattern matching algorithm.

3.5.  CLP(Set)

CLP(Set) is a member in the CLP family where each variable can
have a set as its value. We consider only finite sets of ground terms.
CLP(Set) is well suited for some optimization problems that are hard
to model in CLP(FD) [18, 3]. CLP(Set) is also found useful in some
other application areas such as program analysis [22] and computational
linguistics [32]. Systems that support set constraints include Eclipse
[18], Mozart Oz [31] and the ILOG solver [34].

One of the key issues in implementing set constraints is how to rep-
resent set domains. Let N be the size of the universal set. Then the
domain of a set variable has 2 sets. Because the domain size is expo-
nential in the size of the universal set, it is unrealistic to enumerate all
the values in a domain and represent them explicitly. One method is
to use intervals to represent set domains [18, 34]. We adopt the same
method, but instead of using constant sets to represent the bounds we
use finite-domain variables [41].
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A set-domain variable V is represented as a suspension variable with
an attached term of the following form:

set (Low,Up,Card,Univ)

where Low and Up are two finite-domain variables that represent respec-
tively the lower and upper bounds, Card is another finite-domain variable
that represents the cardinality, and Univ is a term that represents the
universal set.

The representation scheme for set domains facilitates the manipula-
tion of bounds. It takes constant time to add an element to or remove an
element from a set domain. Constraint propagators update the bounds
when related domains are updated. For example, the following shows
one of the rules for dynamically maintaining the interval consistency for
the subset constraint A C B:

propagate_inclusion_low(A,B),
A-attached = set(ALow,AUp,ACard,AUniv),
{dom(ALow,E)} =>
add(E,B).

Whenever an element is added to the lower bound of A, it adds the
element to B.

3.6. CLP (F-Interval)

Interval arithmetic, which is an arithmetic defined on sets of intervals,
has become a rich source of methods for scientific computing [27]. Cleary
first introduced interval arithmetic into Prolog [8]. Since then, several
systems have been implemented (e.g., [4, 5, 23, 29]). In BNR-Prolog
[5], a propagation method similar to the one used in CLP(FD) is used
to reduce the set of values for variables. In Newton [4], a propagation
method inspired by the Newton’s root finding method is used to speed-
up the convergence process. All the systems require the modification of
the underlying abstract machines. In this subsection, we illustrate how
to implement interval arithmetic with action rules.

An interval domain variable V is represented as a suspension variable
with the following attached term float (Low,Up), where Low and Up
are floating-point numbers that denote respectively the lower and up-
per bounds of the domain. Whenever a bound is updated, the event
bound (V) is posted.

Just as for integer constraints, there are many different ways of im-
plementing propagation rules. For instance, the following propagator
maintains interval consistency on X for the constraint X=Y+Z:

x_is_y_plus_z(X,Y,Z),{bound(Y) ,bound(Z)} =>
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Low is min(Y)+min(Z),
Up is max(Y)+max(Z),
X in Low..Up.

The call X in Low..Up narrows the bounds of X if the current lower
bound is less than Low or the current upper bound is greater than Up.

The interval arithmetic is a rigorous theory that provides the defini-
tions of all the computable functions in the floating-point arithmetic.
All the definitions can be translated into action rules.

4. Concluding Remarks

This paper presents six constraint solvers in action rules, a language
construct available in B-Prolog. These solvers illustrate the power of
the language. The solvers for finite-domains, Boolean, trees and sets
have been incorporated into B-Prolog, and the solvers for lists and
floating-point intervals are to be included in B-Prolog in the future.
The results are very encouraging. The finite-domain solver is one of
the fastest. It is about four times as fast as the solver in Sicstus Pro-
log and is even faster than GNU-Prolog, a native compiler that has the
reputation as the fastest CLP(FD) system. The reader is referred to
www.probp.com/fd_evaluation.htm for the comparison results. The set
constraint solver is significantly faster than Conjunto in Eclipse. The
high performance is attributed not only to the fast finite-domain con-
straint solver but also to the new representation scheme for domains that
facilitates updates of bounds. Further work needs to be done on improv-
ing the compiler and deploying domain-specific optimization techniques
in the solvers.
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