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Proving consistency of PA in PA: what is the point?

PA is just an iconic case of “impossibility,” with obvious generalizations.

We distinguish PA and its informal (contentual) version P̂A which is a
mathematical theory with the same axioms as PA. Here is a typical
question when such a distinction is necessary.

Imagine a formal theory T proves its consistency. How can we
claim that T is indeed consistent since if T were inconsistent,
it would prove everything, including its consistency?

Hilbert’s approach was to find a contentual mathematical proof of the
consistency of T by “trusted means” with a subsequent formalization of
the proof in T . In the case of proving PA-consistency in PA, we are
talking about a proof of PA-consistency in P̂A which plays the role of a
“trusted core,” followed by a formalization of this proof in PA.

The widely accepted Formalization Principle, FP states that
any rigorous reasoning within P̂A can be formalized in PA.
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PA-consistency and its Gödelization

Notations: n is a numeral 0′′′...(n times), ⌜X⌝ is the Gödel number of X .
We do not distinguish X , ⌜X⌝, and ⌜X⌝ when safe. ⊥ denotes 0=1.

Standard definition of PA consistency:
for any derivation D, D is not a proof of 0=1. (1)

Proof predicate: x:y is a natural primitive recursive arithmetical formula
“x is a code of a proof of y .”

Gödelization of (1):
for any numeral n, ¬n:⊥. (2)

(1) and (2) are not in the language of PA.

Consistency scheme: the series ConS
PA of PA-formulas

{¬0:⊥,¬1:⊥,¬2:⊥,¬3:⊥ . . .}. (3)

(3) consists of well-defined statements in the language of PA.
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PA-consistency is provably equivalent to ConS
PA

Proposition 1.
(1) ⇔ (2) ⇔ (3).

The proof of these equivalences is formalizable in PA via standard
Gödelization.

Proof. The mathematical proof of these equivalences is straightforward.
It can be formalized in PA in the standard fashion: finite objects
(derivations, numerals) are represented by Gödel numbers, operations
become natural p.r. terms, ConS

PA is coded by a natural p.r. term
producing the Gödel number of ¬n:⊥ given n, etc. We use the truth
predicate Tr1 for Σ1 formulas to recover a p.r. formula φ from its code
since PA ⊢ φ ↔ Tr1(⌜φ⌝).

Corollary: PA-consistency is adequately represented in the language of
PA by the consistency scheme ConS

PA.
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Consistency formula

The provability predicate Pr(φ) is
∃x(x:φ).

We will also short Pr(φ) to 2φ.

Consistency formula is the arithmetical formula ConPA, is ¬2⊥, i.e.,

¬Pr(⊥) or ∀x(¬x:⊥).

A naive (and fundamental) question is whether ConPA is equivalent to
the property of PA-consistency? Can such an equivalence be established
by means of PA itself?
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Consistency property vs. consistency formula

The consistency formula ∀x¬(x:⊥) in the PA-context is not a well-defined
mathematical statement before the domain of ∀x is specified.

The natural argument for why PA-consistency yields ConPA is
W.l.g., assume that Gödel numbering of derivations is surjective,
i.e., each n is a code of some derivation. Suppose “not ConPA.”
Then, for some standard n, n :⊥, hence for some D, D is a
derivation of contradiction.

This argument assumes that “∀x” ranges the standard natural numbers,
which is not formalizable in PA hence requires meta-assumptions about
PA (standard model) stronger than consistency.

So, the claim of the equivalence of PA-consistency and ConPA has no
justification in PA. Moreover, we can show that in PA,

ConPA is strictly stronger than PA-consistency.
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ConPA is strictly stronger than PA-consistency

By Proposition 1, the scheme ConS
PA is an equivalent representation of

(1) and can be used to compare PA-consistency with ConPA.

Proposition 2. ConPA is strictly stronger than ConS
PA in PA.

Proof. Indeed, it is easy to note that
PA + ConPA ⊢ ConS

PA but PA + ConS
PA ̸⊢ ConPA.

So, ConPA is strictly stronger in PA than the PA-consistency property.
Consider the Unprovability of Consistency Thesis, UCT:

“There exists no consistency proof of a system that can be for-
malized in the system itself” (Encyclopædia Britannica).

UCT is widely believed but has never been justified. Though, by the
Second Gödel’s Incompleteness Theorem G2, PA does not prove ConPA,
this does not yield the unprovability of PA-consistency.

This UCT story appears to be one epic blunder in foundations
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The question persists: is PA-consistency provable in PA?

By Proposition 1, this reduces to

whether ConS
PA is provable in PA.

Since ConS
PA is not a single formula but a series of arithmetical formulas

(a serial property), the first step should be developing a rigorous notion
of a proof of a serial property in PA.

Fortunately, such a notion has long been part of contentual mathematical
reasoning, waiting for a rigorous logic formalization.
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A proof of a serial property: quantification is too strong

A common “overkill” approach to proving serial properties in PA:
Let F be {F (0),F (1), . . . ,F (n), . . .} for some arithmetical for-
mula F (x). Then “F is provable in PA” means

PA ⊢ ∀xF (x) (†).

As we have already noticed, in PA, formula ∀xF (x) can be strictly
stronger than F , since ∀xF (x) immediately yields F , but PA + F does
not necessarily yield ∀xF (x).
So, using ∀xF (x) in lieu of F is a strengthening fallacy and should not be
applied to establishing unprovability of F in PA. Mathematically, this
fallacy amounts to assuming the ω-rule which spills over PA.
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and instance provability is too weak

A naive “instance provability” approach to proving a serial property
F = {F0,F1, . . . ,Fn, . . .} by means of S

for each n, S proves Fn (4)
is too weak since it does not address the issue of the proof of (4) in S.
For example, the consistency proof for PA via truth in the standard
model yields instance provability of the consistency property:

Let D be a formal derivation in PA. Since all formulas from D
are true in the standard model and ⊥ is not true, the latter is
not in D. Therefore ¬n :⊥ is true for each numeral n, hence
provable in PA as a true primitive recursive statement.

However, it is not a proof in PA since the notion “true in the standard
model” is not formalizable in PA. So, in addition to “instance provability”
of F in S, some sort of verification of (4) by means of S is also needed.
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A proof of a serial property: Hilbert’s take

Here is Richard Zach’s summary of Hilbert’s understanding of consistency
proofs (“Hilbert’s program then and now” in Philosophy of Logic, 2007):

“What is required for a consistency proof is an operation which,
given a formal derivation, transforms such a derivation into one
of a special form, plus proofs that the operation in fact succeeds
in every case and that proofs of the special kind cannot be proofs
of an inconsistency.”

In a slightly generalized form, a Hilbertian consistency proof is

(i) an operation that, given D, yields a proof that D is free of
contradictions,

(ii) a proof that (i) works for all inputs D.
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Hilbert’s approach in a general setting: selector proofs

The following definition represents Hilbert’s ideas in a general setting.
A proof of a serial property F = {F0,F1, . . . ,Fn, . . .} in a theory S
is a pair of

(i) selector: an operation1 that given n provides a proof of Fn in S;
(ii) verifier: a proof in S that the selector does (i).

We call such pairs (i) and (ii) selector proofs.

We will provide a body of examples that demonstrate that selector proofs
have already been tacitly adopted by mathematicians. The time is ripe
for logicians to catch up.

1For the purposes of this work, selectors are explicit primitive recursive
operations but this can be naturally extended to other provably total functions.
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Formalizing selector proofs in PA

Let
F = {F (u)}

be a serial property with a syntactic parameter u such that for each u,
F (u) is an arithmetical formula. The natural formalization in PA of a
given selector proof of F consisting of a selector and a verifier is:

i) An arithmetical term s(x) formalizing the selector procedure which
given ⌜u⌝ builds the code of some proof of F (u).

ii) A PA-formalization of the verifier which is a PA-proof v of
∀x s(x) :F •(x)

for a natural “coding” term F •(x) such that F •(⌜u⌝) = ⌜F (u)⌝.
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Hilbert meets Brouwer on consistency proofs

Consider the Brouwer-Heyting-Kolmogorov clause for

∀xF (x). (5)

In Kreisel’s form, a constructive proof of (5) is a pair ⟨s, v⟩ where v is a
proof that for each x , s(x) is a proof of F (x).

BHK proofs of universal statements are intrinsically selector proofs.
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Why selector proofs are acceptable as proofs

Encyclopedia Britannica:

a proof is an argument that establishes the validity of a proposition.

For example, a proof in PA satisfies this requirement: if PA proves F then
F is a valid statement about integers.

Selector proofs appear to pass this test as well: as we show later, if PA
(selector) proves a serial property F , then each instance of F is provable
in PA and hence F is a valid set of statements about integers.

This suggests that selector proofs constitute a sound conservative
extension of the conventional notion of arithmetical proof of formulas on
a new class of syntactic objects: serial properties.
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Example 1

Complete Induction principle, CI: for any formula ψ,
if for all x [∀y < x ψ(y) implies ψ(x)], then ∀xψ(x).

Complete Induction for PA is provable by means of PA. Here is a
textbook proof of CI: apply the usual PA-induction to ∀y < x ψ(y) to
get the CI statement CI(ψ) for ψ.

This is a selector proof which, given ψ selects a derivation of CI(ψ) in a
way that provably works for any input ψ. Its formalization in PA:
▶ pick a natural primitive recursive selector term s(x) which given ψ

computes the code of a derivation in PA of CI(ψ);
▶ find an easy proof in PA (verifier) that s(x) works for all inputs

PA ⊢ ∀x s(x) :CI•(x)

with CI•(x) a natural p.r. term such that CI•(⌜ψ⌝) = ⌜CI(ψ)⌝.
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Example 2
The product of polynomials is a polynomial.2

Here is its standard mathematical proof: given a pair of polynomials f , g,
using the well-known formula, calculate coefficients of the product
polynomial pf ·g , and prove in arithmetic that

f ·g = pf ·g . (6)
This is a selector proof: for each f , g , it finds a proof of (6) in PA. To
formalize this proof in PA, we build
▶ a p.r. term Product•(x , y) such that Product•(⌜f ⌝, ⌜g⌝) is

⌜f ·g =pf ·g⌝;
▶ a natural p.r. selector s(x , y) such that s(⌜f ⌝, ⌜g⌝) is the Gödel

number of a PA-derivation of f ·g =pf ·g .
By direct formalization of the above reasoning, PA proves

∀x , y s(x , y) :Product•(x , y).

2A polynomial is a term anxn + an−1xn−1 + . . . + a1x + a0, where each ai is
a numeral and x a variable. In f · g , “·” stands for the usual PA multiplication.
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Example 3

Take the double negation law, DNL3 in arithmetic: for any formula X,

X ↔ ¬¬X . (7)

The standard proof of DNL in PA is for given X, build the usual logical
derivation D(X ) of (7) in PA. This is a selector proof which builds an
individual PA-derivation for each instance of DNL in a way that provably
works for any input X . This proof can be easily formalized in PA as a
derivation of

∀x s(x) :DNL•(x).

Here DNL•(x) is a natural coding term such that

DNL•(⌜X⌝) = ⌜X ↔ ¬¬X⌝.

The selector s(x) is a natural p.r. term such that s(⌜X⌝) = ⌜D(X )⌝.

3or any other tautology containing propositional variables.
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Ubiquitous selector proofs

So, selector proofs have been used as proofs in arithmetic of serial
properties

{F (u)}

in which u is a syntactic parameter (ranging over terms, formulas,
derivations, etc.) and F (u) is an arithmetical formula for each u. Given
u, such a proof selects a PA-derivation for F (u) with subsequent,
possibly informal or default, verification of this procedure.

Within this tradition, we have to accept and study selector proofs as
legitimate logic objects. In this case, the proof of PA’s consistency within
PA (below) is a natural consequence.

If we don’t accept selector proofs, we have to admit that such
basic facts as induction, propositional tautologies, product of
polynomials, etc., are not provable in arithmetic. Furthermore,
consistency is not provable by the same bureaucratic reason:
selector proofs are not included.
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Selector proof vs. single formula consistency proofs

Let ConT be the standard consistency formula for a theory T ⊇ PA.
Consider theories:

PA0 = PA, PAi+1 = PAi + ConPAi , PAω =
⋃
i∈ω

PAi .

Consider a folklore consistency proof of PAω by means of PAω:
Let D be a derivation in PAω. Find n such that D is a derivation
in PAn. ConPAn – one of the postulates of PAω – implies that
D does not contain ⊥.

This is a fine selector proof of consistency of PAω in PAω. The selector
that, given D, computes the code of a PAω-derivation of “D does not
contain ⊥” is p.r. and its verification is straightforward.

On the other hand, by G2, PAω does not prove ConPAω but this
observation does not harm the consistency proof above because that
proof does not derive ConPAω .
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Selector proofs vs. ω-rule

Question: What is the difference between selector proofs and ω-rule

F (0),F (1), . . . ,F (n), . . .
?

∀x F (x)
(Note that adjoining PA with the ω-rule results in true arithmetic.)

Our response: Selector proofs represent derivations of assumptions
F (0),F (1), . . . ,F (n), . . . in a finite form using verified selector terms:

v : [∀x s(x) :F •(x)],

but do not make the conclusion ∀xF (x). By doing this, we stay within
PA since PA does not necessarily prove ∀xF (x) here.
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A basic foundational observation

(i) We provide a selector proof of PA-consistency in P̂A.
(ii) We then formalize (i) in PA.

One may ask whether we assume the consistency of P̂A? No, we don’t
need the consistency assumption to reason within given boundaries.

Sergei Artemov Consistency of PA is a serial property, and it is provable in PA



A sketch of the proof

Step 1 - preliminary. Inspect the well-known proof of reflexivity of PA:
Let PA↾n be the fragment of PA with the first n axioms. Then
for each numeral n, PA ⊢ ConPA↾n .

From this proof, extract a natural primitive recursive function that given
n builds a derivation of ConPA↾n in PA. Note that ConPA↾n implies
“D is not a proof of ⊥” for any specific derivation D in PA↾n.
Step 2 - a contentual selector proof of the consistency of PA. Given a
PA-derivation D, find n such that D is a derivation in PA↾n (an easy
primitive recursive procedure). By Step 1, PA proves that “D is not a
proof of ⊥” and the code of this proof can be calculated by a primitive
recursive selector s from the code of D.
Step 3 - internalization. A natural internalization of Step 1 and Step 2
in PA yields the desired verification of the selector in PA:

PA ⊢ ∀x s(x) :¬x :⊥.
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How far we can go with proving consistency in PA

Let x:T φ be a shorthand for a proof predicate in a theory T :
“x is a code of a proof of formula φ in T .”

We drop this subscript when T = PA.
Suppose PA selector-proves the consistency of a theory T . Then for
some primitive recursive term s(x), PA proves

∀x s(x):¬x:T⊥.
By logical reasoning, PA then would prove

∀x 2¬x:T⊥
which was independently shown to be impossible by Kurahashi and
Sinclaire for T = PA + ConPA. This indicates that PA cannot prove
consistency of any theory T ⊇ PA + ConPA by the given method without
further modifications.

However, PA selector-proves consistency of T for some proper extensions
T of PA in particular T = PA + slow consistency of PA (shown by
Freund/Pakhomov and Gadsby independently).
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What went wrong in the UCT argument in the first place?

By Gödel’s second incompleteness theorem, G2, PA, if consistent, does
not prove ConPA. The standard justification of UCT in its Britannica
form is that any consistency proof for PA when formalized in PA yields a
derivation of ConPA. Therefore, no consistency proof for PA can be
formalized in PA.

A tacit assumption (*) of this argument is that
any formalization of PA-consistency in PA yields ConPA in PA.

This assumption (*) is wrong: the natural formalization of the canonical
definition of PA-consistency, ConS

PA, does not imply ConPA in PA.
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Gödel’s Theorem and Hilbert’s consistency program

Despite widespread belief, Gödel’s second incompleteness theorem
has not canceled Hilbert’s consistency program. In particular, one
cannot conclude that Hilbert’s ϵ-substitution method for PA, HES, if
successful, should a priori produce a PA-proof of ConPA.

As we know, HES was not successful in proving of consistency of
PA4. As this is shown above, for some well-principled generaliza-
tion of HES, selector proofs, the corresponding PA-consistency
statement is provable in PA.

Since the burden of proof lies on UCT, there were no reasons to assume
that G2 has precluded HES from succeeding. Moreover, as UCT is shown
to be false, it is time to revive Hilbert’s consistency program.

4Kripke, in 2022, showed that HES in its original form cannot succeed for
non-Gödelian reasons. This, however, does not alter the fact that for 90 years,
Hilbert’s consistency program remained canceled without sufficient cause.
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Some Proof Theory of selector proofs

Let φ(x) be an arithmetical formula. By {φ(x)} we denote a serial
property {φ(0), φ(1), φ(2), . . . , φ(n), . . .} which we call scheme.

A proof of a scheme {φ(x)} in PA is a pair ⟨s, v⟩ where
▶ s is a primitive recursive term (selector),
▶ v is a PA-proof of ∀x s(x) :φ(x) (verifier).

The following properties of proofs of schemes hold.
▶ Proofs of schemes in PA are finite syntactic objects.
▶ The proof predicate “⟨s, v⟩ is a proof of scheme {φ}” is decidable.
▶ The set of provable in PA schemes is recursively enumerable.

Gadsby: Iterated selector proofs collapse to non-iterated selector proofs.
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Degrees of provability for schemes
A scheme {φ} is
▶ provable in PA if it has a proof in PA,
▶ strongly provable in PA if PA ⊢ ∀xφ(x),
▶ instance provable in PA if PA ⊢ φ(n), for each n = 0, 1, 2, . . ..

Proposition 2.

i) “Strongly provable in PA” yields “provable in PA,”

ii) “provable in PA” yields “instance provable in PA.”

Corollary. Proposition 2(ii) naturally extends from schemes to all serial
properties. Proving serial properties does not add new theorems to PA.

Proposition 3

i) “Instance provable” does not yield “provable,”

ii) “provable” does not yield “strongly provable.”
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Proof of consistency scheme but not consistency property

Consider the p.r. function s(x) which given x returns a PA-proof of ¬x:⊥:
Given x, check whether x is a proof of ⊥ in PA. If “yes,” then
put s(x) to be x followed by a simple derivation of ¬x:⊥ from
⊥. If “no,” then use provable Σ1-completeness and put s(x) to
be a constructible derivation of ¬x:⊥ in PA.

Let v be an obvious PA-derivation of ∀x s(x):¬x:⊥.

1. Whether ⟨s, v⟩ is a proof of the scheme {¬x:⊥} in PA?

2. Whether ⟨s, v⟩ is a formalized selector proof of PA-consistency?

The answer to (i) is obviously “yes” since ⟨s, v⟩ fits the definition.
The answer to (ii) is “no.” For the affirmative answer, each s(n), as a
contentual argument, should be a P̂A-proof that n does not contain ⊥.
This condition is not met: s(n) only states that if n contains ⊥, we could
still offer a fake proof of ¬n:⊥.
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Extensions of PA

Consider a theory T ⊇ PA. Does it prove self-consistency? Yes, it does.
Indeed, consider a derivation D in T and let D̃ be the conjunction of the
universal closure of all formulas from D. For an appropriate n,

PA ⊢ D̃ → Trn(D̃).

Here Trn is the standard truth formula for all Σn arithmetical sentences
φ. Note that for all such φ, PA ⊢ Trn(φ) ↔ φ.

Since T ⊢ D̃,
T ⊢ Trn(D̃).

Since T proves ¬Trn(⊥), T proves that ⊥ in not in D.

This reasoning defines a primitive recursive selector that for each D
builds a T -proof of “⊥ in not in D.” The natural internalization of this
reasoning in PA (hence in T ), confirms that this is a selector proof of
T -consistency in T .
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Finally: is mathematics able to prove its own consistency?

Selector proofs provide a formal affirmative answer and here is a sketch
of the argument.

Note that ZF is essentially reflexive. Namely, any theory T ⊇ ZF proves
the standard consistency formula for each of its finite fragments {φ};
given φ we constructively build the proof of Con{φ} in T .

This suggests a natural selector proof of consistency of any T ⊇ ZF in T :
given a derivation D on T , calculate the conjunction φ of all formulas in
D and find a proof of Con{φ} in T. This yields that T proves that D does
not contain contradictions. This proof is naturally formalizable in ZF,
hence in T .

As before, the mathematical value of such a proof depends on how much
trust we invest into T itself.
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Any progress in Hilbert Program?

This work dismantles the Unprovability of Consistency thesis in
Encyclopædia Britannica’s version. It does not intend to reach the
principal goals of the Hilbert Program of proving consistency by finitary
means. However, it makes progress by removing its major roadblock.

Before: It was believed that Gödel’s second incompleteness theorem
prevented the proving of consistency of a system within that system. It
was also thought that Hilbert’s consistency program could not succeed
because of that.

After: Gödel’s second incompleteness theorem does not apply to Hilbert’s
approach to proving consistency how it was previously thought. Though
the ϵ-substitution method for PA fails (by non-Gödelian reasons), some
modifications of Hilbertian methods prove consistency of PA within PA.

The results by Gadsby, Kurahashi, and Sinclaire indicate that some new
ideas are needed for further progress in Hilbert’s consistency program.
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Selector proofs beyond proving consistency

Let us revisit the idea of presenting a selector proof of a scheme {F (u)}
in a simplified implicit form as ∀x2F (x), i.e.,

∀x∃y [y:F (x)]. (8)

As we noticed earlier (8) is not a substitute of the standard selector proofs
in questions of proving consistency of T in T . However, under some
additional meta-assumptions about T , i.e., the arithmetic soundness of
T , a proof of ∀x2T F (x) in T yields an explicit selector s(x) such that

T ⊢ ∀x s(x):F (x).

This suggests that, for a sound T in situations where a specific selector is
not essential, one can use (8) in place of the standard selector provability.
Studying selector provability in the (8) form becomes an integral part of
the selector proof theory, cf. the talk Properties of Selector Proofs by E.
Gadsby at this conference.
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